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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 2551

EFFECT OF VARIOUS PARAMETERS INCLUDING MACH NUMBER
ON THE SINGLE-DEGREE-OF-FREEDOM FLUTTER OF A
CONTROL SURFACE IN POTENTIAL FLOW

By Harry L. Runyan
SUMMARY

Various investigations of single-degree-of-freedom pitching oscil-
lations of a wing in potential flow have been made. However, corre-
sponding studies of single-degree-of-freedom flutter of a control
surface have not been made. The present paper demonstrates by theo-
retical calculations that single-degree-of-freedom control-surface
flutter is possible. The effects of structural damping, aerodynamic
balance, axis of rotation, and compressibility are included.

The mechanism of instability presented here is based on potential-
flow theory and the results of such a study are not directly appllcable

"to separated flow; in addition, certain practical limitations are

discussed.

INTRODUCTION

!

Flutter of & control surface alone, that is, an unstable oscilla-
tion in which the control surface is effectively rigid and nondeformable
and rotates around its hinge line, has been encountered on aircraft in
flight. This phenomenon, as well as stall flutter, is thought to be
associated with separated or nonpotential flow, although the explanation
is not entirely clear. Flutter of a control surface in one degree of
freedom is possible in potential flow, at least theoretically, and forms
the subject of the present paper. The development of this subject may
possibly contribute to the understanding of the nonpotential-flow
problem

Theoretical investigations of several types of undamped single-
degree-of-freedom oscillations in potential flow have been reported
recently. For instance, Smilg (reference 1) has reported a study of
the undamped oscillations of a pitching wing in incompressible flow and
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this study has been extended by Runyan in reference 2 to include the
effect of compressibility. Cunningham (reference 3) has studied the
undamped bending oscillations of a swept wing in subsonic flow. The
undamped pitching oscillations of a wing in supersonic flow have been
studied by a number of investigators, for instance, Garrick and Rubinow
(reference 4), Temple and Jahn (reference 5), and Watkins (reference 6).

The aforementioned papers concern single-degree-of-freedom pitching
of a wing or the bending of a swept wing. Some examples of control-
surface flutter in one degree of freedom are given in reference 7 along
with a discussion of some possible causes. Apparently no calculation
studies exist demonstrating the conditions for the existence of single-
degree-of-freedom oscillations of a control surface. Accordingly, the
purposes of this paper are (1) to show the conditions for the existence
of single-degree-of-freedom oscillations of a control surface based on
potential-flow theory and (2) to examine and present the effect of various
parameters such as Mach number, fluid density (or altitude), location of
axis of rotation, structural damping, and aerodynamic balance on this type
of osclllatory instability.

Certain limitations which may affect practical consideration of the
results presented in this paper should be noted: (1) the calculations
are based on two-dimensional eaerodynamic coefficients, and the effect
of aspect ratio, which could be appreciable, is not taken into account,
(2) the influence of additional degrees of freedom, which will always
be present in actual configurations, is not considered, and (3) the
effect of finite thickness and shape of the control surface is not
considered, since the control surface has been replaced in theory by
its mean camber line. In addition to these limitations, the results
of this study are not directly applicable to separated flow, since the
analysis was based on potential-flow theory. Nevertheless, this approach

should provide a basis for comparison and study and a gulde for further
investigation.

SYMBOLS

b wing half-chord, feet

c location of hinge axis of control surface without aerodynamic
balance with respect to midchord point, based on half-chord
and positive rearward

c! location of leading edge of control surface with aerodynamic
balance with respect to midchord point, based on half-chord
and positive rearward
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Cﬁ torsional stiffness of control surface about hinge line ¢

CRR function of ratio of aileron chord to wing chord

e location of hingé axis of control surface with aerodynamic'
balance with respect to midchord point, based on half-chord
and positive rearward

F and G transcendental functions of k for oscillating plané flow

&g structural damping coefficient (ﬂgB ~ Logarithmic decrement)

IbB out-of-phase aerodynamic moment coefficient |

Eﬁﬁ total out-of-phase moment coefficient

IB mass moment of inertia of control surface about hinge line
per unit length

Kggr and KﬁR aerodynamic moment coefficients for a controi surface in

compressible flow

k reduced-frequency parametér (bw/v)

I/ nondimensional distance from control—sufface axis of rotation
to leading edge of control surface (e - c')

M Mach number

MB total\complex aerodynamic moment on control surface

N5, Ng aerodynamic coefficients for a control surface in supersonic

. flow

ﬁbB total inphase moment coefficient

RbB‘ part of inphase aerodynamic moment on control surface

Tn control-surface coefficients defined in references 8 and 9

v flufter velocity, feet per second

"B control-surface rotation, measured from wing chord line
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p fluid density, slugs per cubic foot
w flutter frequency, radians per second
wB natural frequeﬁcy of control surface about hinge axis, radians

per second
ANATLYSIS

_ In this section, the expression for the equilibrium of moments on
a control surface oscillating sbout its hinge line is given, followed
by a discussion of the aerodynamic moment for (1) a control surface
oscillating in incompressible flow, (2) a control surface, having aero-
dynamic balance, oscillating in incompressible flow, and (3) a control
surface oscillating in compressible flow.

The equation representing the equilibrium of moments per unit
length on a control surface oscillating about the hinge line c¢ is

IBE + (1 + 1ga)CpB = My (1)

where IB is the mass moment of inertia per unit length of the control
surface about its hinge 1line ¢, B 1s the angular deflection of the
control surface measured from the chord line, &g is a structural
damping coefficient, and CB is the torsional stiffness of the control
system about c¢. The quantity Mg 1is a complex aerodynamic momegt,
which is a function, in part, of the displacement B, velocity B,
acceleration E, reduced-frequency parameter k, Mach number M, and
location of hinge axis c¢. The complex notation has been in use in
flutter work for many years because of its convenience, since it contains
both the magnitude of the forces or moments and the phase with respect
to the displacement. The expression for the aerodynamic moment Mg

is given in reference 8 for a control surface which is hinged at its
leading edge and oscillating in incompressible two-dimensional flow.

An expression for the aerodynamic moment MB for an aserodynamically
balanced control surface is given in reference 9. Closed expressions
for MB for compressible fluid do not exist and values of the aero-
dynamic moment MB must be obtained by use of tables as given, for
example, in references 10 and 11 for subsonic flow (M < 1) and in
reference 12 for supersonic flow (M > 1).
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Since equation (1) is complex, it can be separated into two com-
ponents as follows:

Ryp + 1Tp = 0 R G

where ﬁbB represents the inphase (real) moment coefficient and be
represents the out-of-phase moment coefficient for the control surface.
Equation (2) implies that both components, Ips and Ryg,  must vanish

simultaneously for equilibrium.

The vanishing of the out-of-phase moment fﬁﬁ corresponds to a
borderline condition between damped and undamped oscillations as was
more fully discussed in reference 2. The flutter frequency may then
be determined from the inphase (real) moment equation. This inphase
moment equation -ﬁbB = 0 may be put in more convenient form as follows:

w\® 1 | - (3)
(wa)‘ ;_Rbﬁ,g_?; | ’

where RbB’ is proportional to the inphase aerodynamic moment oh the

control surface. In the subsequent sections, expreésions for TbB
and RbB‘ will be given for the various cases.

‘Equations for Incompressible Fléw

Control surface without aerodynamic balance.- The expression for
the aerodynamic moment on a harmonically oscillating control surface
~1n incompressible flow having no aerodynamic ‘balance may be derived from
‘reference 8 as

Mg = -Dbg[% VE(T5 - TI;TIO)B - 21—11 VbRT,T 1 - %;T3b2ﬁ.3] -

ovbPT (F + iG)(% Tyov8 + 2 T11I3> | (1)
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where the T coefficients are functions only of the hinge position «c¢
and are defined in reference 9. Substitution of equation (4) into
equation (1) and separation into the two components lead to equation (2)
where

- _T 1 TlQ(Tll 26 Tio or\ . Ip %)2
Ry = — + (T -TT)-——-—————-—--—————+ B -2
bB = "2 " 122\'5 T *h10) T B \Zx kT T k2> b |\ @
=0 (5)
and
: =;31_%<T_1929+T_1izp U (‘*’..B)g
BB T k|2r \ * k " 2= o2 W11 B oot \ &
=0 (6)

The inphase (real) moment ﬁBB may be expressed in the form given by
equation (3) where

T T T
v oo 12ff11 26 C1oeR\ f3 . 1o
BE w2t k2ﬂ2<T5 - TwTio (7)

A numerical or a graphical method is necessary for the solution of
the out-of-phase moment Iyg = O since the functions F and G are
transcendental functions of 1/k. Once the combination of 1/k and
F and G that satisfies equation (6) has been determined, the frequency
and flutter speed can be obtained from equation (3) in which the value

of Ryg' 1is taken for the same value of 1/k that satisfied equation (6).

Control surface with aerodynamic balance.- The force and moment
on a harmonically oscillating control surface having aerodynamic
balance have been derived in reference 9 for incompressible flow. A
control surface having aerodynamic balance is represented in refer-
ence 9 as follows:

‘Fe______ N ____ﬁ»{ /f/?'/e
SIS

&
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where the dimensions ¢, c¢', e, and 1 are referred to the half-
chord b.

The out-of-phase (imaginary) moment coefficient may be derived
from reference 9 as

11 1 1 oG

-21—H<Tll -21T10>2F]}
_, (8)

and the'frequenc& is determined from the inphase (real) moment expressed
as equation (3) where

Rpg' = - -1(1—2<- T3 + 21T, - 12T5) 2. 2(T18 + ITpg + 22T28>

1 1 2G 1 oF
‘Q‘R(Tle - zz'reo) [-2?('1'11 - 22T10>T - —-(Tlo - ZTgl) ?] (9)

The T coefficients are given in the appendix of reference 9 and
all T's are functions of c¢. One exception that needs separate con-
sideration is the term ‘T28 which 1s discussed in reference 9. For the

case (over idealized) of a sharp vertical step, the term T28 becomes

inflnite, however, for practical configurations certain approximations
can be made which permit a finite-value determination of this term.
One such simple approximation is given in reference (9) as

o c' = %{é + 3c)

Equations for Compressible Flow

Closed expresslons ‘for aerodynamic moment and 1ift on oscillating
wings and control surfaces in compressible flow do not exist. Aero-
dynamic moment and 1lift coefficients have been calculated by several

5 investigators for various ranges of Mach number and reduced frequency
and are usually presented in the form of tables. In reference 10,
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tables of aerodynamic coefficients are presented for one aileron-to- -
wing-chord ratio of 15 percent (c = 0.7) for M = 0.7. These tables v
are extended in reference 11 to include several aileron-to-wing-chord

ratios of 24, 33, and L2 percent.

A notation differing from that used in this paper is used in
references 10 and 11 where the inphese (real) moment coefficient of
a control surface i1s denoted by KﬁR and the damping (out-of-phase)

moment is denoted by KﬁR. The relation between the coefficients of
this paper and those of references 10 and 11 is given as

K
_ _RR
K} .
, _ _RR
R'bB = 12 - °RR

where cpp 1s a function of the ratio of the aileron chord to the wing ‘

chord and is given in reference 11, page 16. o
In order to obtain a solution, it is necessary to plot KﬁR againsgt .

k and determline the value of %k at which KﬁR = 0. The frequency is

then given for the same value of l/k by o

&
B 1l - (EEB - C >npbh .
k2 IB i ,;

The results of calculations of aerodynamic coefficients for a
control surface oscillating in supersonic flow have been reported in
reference 12. The aerodynamic moment on the control surface is given
as

My = -upb2v2k2;s(n5 + iN6> | (12)
where N5 is the inphase moment coefficient and N6 is the out-of-

phase moment coefficient. In order to obtain a solution for the out-
of-phase moment, Ng = O, the value of 1/k at which Ng = O must be
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determined. The frequency is then given for the same value of l/k
by

KCA L (13)
< > 1 - N5 i ng‘;h

»

DISCUSSION OF RESULTS

In this section, the results of calculations based on the expres-
sions previously presented are given. The oscillation of a control
surface in incompressible flow with zero structural damping is discussed
and the effect of structural damping is introduced. A discussion of

. the effect of aerodynamic balance and the effect of compressibility

follows.

Flutter of control surface with zero structural damping in incom-

pressible flow.- Calculations based on equations (5) and (6) where’
g = O have been made for various locations of the control-surface
axis of rotation. The results of the computations are presented in
figures 1 and 2 for ratios of the control-surface chord to wing chord

‘of 10 percent, 30 percent, 50 percent, and 100 percent (c = 0.8, 0.4,

0, and -1).

In figure 1 the flutter-speed parameter v/b is plotted against
4B

an inertia parameter IB/nob . The curves represent the transition,

for a given Mach number, from a damped or stable condition to an undamped
or unstable condition. The stable region is below or to the left of

a curve, and the unstable region is above or to the right of a curve.

For small values of the inertia parameter the control surface would be
stable and, 1f the inertia parameter is increased, for instance by an

-increase in altitude, a value equal to the vertical asymptote could be

‘ , : . Ip
reached or exceeded. In figure 1(a) (c = 0.8) this value is — = 7.58
7nPb

vhich increases to 577.7 (fig. 1(d)) for ¢ = -1.0, that is, for a
wing oscillating about its leading edge. The flutter speed for values

- of IB/ﬂprL equal to the asymptote is infinite, but a slight increase
in IB/npblL would result in a very rapid decrease in the flutter speed.

For values of IB/np'blL approachlng infinity, v/bmg approaches

a value equal to v/bw at which the oscillation occurs. It should be
noted that the oscillation occurs at a constant value of v/bw, which
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means that, no matter what the value of the inertia parameter, the wave
length of the oscillating wake will be the same in the border condition.

The frequency ratio (w/wB)g is plotted agalnst the inertia param-
eter IB/np‘bh in figure 2 for the same axis-of-rotation locations as

for figure 1. The unstable region is above or to the right of a curve.
The vertical asymptotes are the same as for figure 1, but the horizontal

asymptote is unity. This fact indicates that, for very large values of

IB/npbh, the frequency of oscillation approaches the natural (still air)
frequency of the control surface.

In figure 3, the value of the reduced velocity l/k is plotted
against the location of the axis of rotation of the control surface.
Note that the variation of 1/k with c 1s not very large
(25 < l/k < 35), but the values are considerably higher than experienced
in flutter and approach values found in stability work.

In figure 4, the minimum value of the inertia parameter (vertical
asymptote) at which the oscillation could occur is plotted against
location of comtrol-surface axis of rotation. The value of the inertia
parameter increases as the alleron-to-wing-chord ratio increases. This
plot 'is of particular significance with regard to the zero structural
restraint case (wB = 0). 1If equation (3) is inverted to obtain

2 L
<ﬁ> S 1 g

I

and ag = O, there is obtained the relation

I
Rog' = —7 - (am

which indicates that, if IB/ﬂpbh 1s equal to Ryg', an oscillation

is possible. The frequency of oscillation is then a direct function of
the velocity, and flutter can theoretically occur above zero airspeed
as shown by the relation

_ bw
My
vhere 1/k is the value that satisfied Iyg = 0. If the value of Ryg'
is exceeded by Iﬂ/npbh, the control surface is being operated past

the transition point and in the unstable region.
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Flutter of control surface with structural damping in incompressible
flow.- As is often done, the type of damping force assumed is one that

is inphase with the velocity but proportional to the angular dis-
placement . B.

The results of computations for one location of the axis . of rota-
tion ¢ = 0.7 are presented in figures 5 and 6. In figure 5, the
flutter-speed parameter v/wa is plotted against the inertia parameter.
As noted, there 1s a very large effect of the damping parameter and it
may be that structural damping could be used for eliminating this type
of oscillation. In figure 6, the frequency ratio (w/wg)? is plotted
against the inertia parameter. It should be noted that flutter does
not occur (contrary to the case for zero damping) at a constant value
of the reduced speed v/bw as the inertia parameter is varied. The

values of v/bw and IB/npbu for several values of the structural
damping coefficient for ¢ = 0.7 . are as follows:

1/k for -
& i): - 20| I‘Su = 30 IBM - 50 Iﬁh =75 IB# = 100
npb Tpb npb npb Pb
0 3L.25 - 34.25 34.25 34.25 3k.25
01| 38.0 M7 | 5601 67.58 77.60
02| 38.80 46.36 58.8 71.50 82.35

Flutter of a control surface having aerodynamic balance and zero
structural damping.- Calculations have been performed for two control
surfaces by use of equations (8) and (9) for two locations of axis of
rotation e %but one value of c, and the results are plotted in
figures 7 and 8. 1In figure T the flutter-speed coefficient is plotted
against IB/rtprL for ¢ = 0.4 and e = 0.55 and e = 0.75. The
curves are similar to those obtained without aerodynamic balance, except
that the limiting value (vertical asymptote) appears to be at a larger

In figure 8 the frequency ratio (a)/wB)2 is
for the same cases.

value of the abscissa.
plotted against the inertia parameter IB/npb

The important facts to be noted are (1) that aerodynamic balance
did not eliminate single-degree-of-freedom instability of a control
surface and (2) that the greater the amount of aerodynamic balance, the
higher the limiting value of the inertia parameter at which the oscilla-
-tion could begin for this particular case. '
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Flutter of control surface in compressible flow.- The results of
the calculations based on the equations and tables discussed earlier
are presented in figures 9, 10, and 11. In figure 9 the flutter-speed
parameter is plotted against the 1nertia parameter for M = 0, 0.7,
and 10/9. The curves for M = 0.7 and M = é? are similar in form

to the curve for M = 0, except that the stable range of the inertia
parameter is greatly reduced as the Mach number is increased. Another
effect of increasing Mach number is to reduce the value of the reduced-
velocity coefficient 1/k, and this reduction is believed to be signifi-
cant. In flgure 10 the frequency ratio is plotted against the inertia
parameter for three Mach numbers M = 0, 0.7, and 10/9.

A significant plot is made when the asymptotic value of the inertia
parameter 1s plotted against Mach number as shown in figure 11. The
relation between the inertis parameter and Mach number appears to be
linear, and the region to the right and above the curve is the unstable
range. This plot, as discussed earlier, is of particular significance
with regard to the control surface without elastic restraint (wB = 0)
and shows that an aileron that is stable in the low Mach number range
could become unstable in the high subsonic or lower supersonic range.

The asymptotic value of the inertia parameter at M = 0.7 for
several positions of the control-surface hinge axis is included in
figure 4. The effect of Mach number is again apparent in that increasing
Mach number considerably reduced the value of the inertia parameter for a
given hinge position at which oscillation could occur.

VARIOUS PRACTICAL LIMITATIONS TO THEORY

In general, theoretical control-surface derivatives (either steady
or unsteady) have not always been in good agreement with experiment.
This difference 1s even more pronounced at the higher aircraft flight
speeds and 1s partially due to breakdown and separation of the flow
over the rear part of the wing. Since the aerodynamic coefficients
have been derived on the basis of nonviscous, linearized, potential flow
for simplified models, and the actual flow is viscous, nonlinear, and
nonpotential, the differences between theory and experiment are not
unexpected. However, studies of control-surface characteristics based
on potential-flow theory should provide a basis for the study of the
separated-flow phenomena and provide for a logical grouping of the vari-
ebles to be experimentally investigated.

The present calculations have been based on two-dimensional aero-
‘dynamic coefficients and hence do not take into account the effect of
aspect ratio. Aspect ratio could have an appreciable effect on this
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type of oscillation since, for the most part, the oscillations are of
a low frequency and approach the range of stability frequencies. How-
ever, reference 6 shows that the effect of finite aspect ratio for a
pitching wing in supersonic flow reduces but does not eliminate the
instability, and a reasonable assumption is that a similar effect may
‘be found for the subsonilc case. ‘

The influence of additional degrees of freedom was not considered
in the analysis. Actual configurations will normally have more than
one degree of freedom, but an analysis based on a single-degree-of-
freedom system may be an easily obtained limit for cases of coupled
flutter.  There may, however, be circumstances in which only one degree
of freedom is of importance. Cunningham (reference 3) showed in a
recent paper that a slight relaxing of the condition of infinite stiff-
ness of another degree of freedom did not appreciably influence the
flutter speed. '

Another factor which might be of importance is the thickness of
the control surface. The aerodynamic coefficients used here were based
on the concept of replacing the wing and control surface by an infinitely
thin mean camber line. The effect of thickness requires further
investigation. '

CONCLUSIONS

Single-degree-of-freedom-flutter calculations which show the effects
of various independent parameters, namely, Mach number, location of hinge
axls, aerodynamic balance, and structural damping are presented for a
control surface. The following conclusions may be enumerated:

1. Calculations based on unsteady potential-flow theory indicate
the existence of single-degree-of-freedom flutter of a comtrol surface.

2. Flutter of a control surface alone is more likely to occur for a
configuration operating at high subsonic or low supersonic speeds and at
high altitudes than at low speeds and low altitudes.

3. Structural damping has a beneficial effect, since it raises the
flutter speed appreciably. The use of structural damping may be a
convenient method of eliminating single-degree-of-freedom flutter.

L. The unstable oscillation is still possible if the control surface
is aerodynamically balanced. ‘
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5. These results have several practical limitations. Such effects
as separated flow, aspect ratio, coexistence of other degrees of freedom,
and finite thickness of control surface were not considered and could be
significant. However, the results should prove useful as a basis for
further experimental study.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., August 17, 1951

i
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